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CREATING ALGORITHMS AS AN AID TO JUDGMENT

A vital task that people often undertake is to provide

answers to important questions of fact. For example, experts

make judgments about the likely value of a numerical quantity

(e.g., "How many enemy troops are deployed in that area?" "How

long will it take to repair the system?") or the chances that a

particular goal will be achieved (e.g., "What is the probability

that the system will be operational by tomorrow?"). If the facts

are readily at hand and known for certain, responding to such

queries might be a simple matter. If the facts aren't available,

then the best one can do is formulate a judgment about the issue

at hand based on whatever information is available. When time

and resources are relatively limited, this may mean constructing

a response by relying on relevant knowledge one has already

accumulated in memory.

How can the contents of memory best be accessed to take the

most complete advantage of what one knows relevant to a point of

fact? The strategy here presented for aiding judgment is

algorithmic decomposition. The essence of this approach is that

a complicated or unknown quantity is decomposed into a number of

sub-problems that are more manageable or can be estimated more

readily. Answers to the component parts of the problem are then

combined according to a set of rules (an algorithm) to yield an

answer to the original problem.

Decomposition strategies have diverse application and play

an important role in the operation of computers (e.g., Goodman &

Hedetniemi, 1977) and decision-making systems (e.g., Raiffa,
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1968). However, the pitfalls associated with employing

algorithmic decomposition as a strategy for aiding people in

organizing their knowledge about a problem have received little

attention.

In previous research (MacGregor, Lichtenstein & Slovic, in

press), we showed that when people are given algorithms written

by the experimenters, their accuracy in estimating unknown

quantities is better than performance without the algorithms.

This result is encouraging, but it leaves a crucial step

untested: Can people be trained to create their own algorithms,

without receiving any training about the uncertain quantities?

Will instructions about how to estimate the height of the Empire

State Building from one's estimates of the average height per

floor and the number of floors teach people how to construct

their own algorithms for, for example, the number of pounds of

potato chips consumed yearly in this country? If such training

is successful, will accuracy be improved? The present paper is

addressed to these questions.

In addition, we have a continuing interest in the effect of

decision aids on confidence. In assessing one's confidence, the

amount of knowledge one has available should serve as an

important guide; the less one knows, the less confident one

should be. Strategies that assist in the retrieval of knowledge

can be expected to exert some influence on the confidence people

attach to their judgments. The danger here is that a decision

aid might, because it appears to be a help, increase confidence



without any corresponding increase in accuracy.

For several years we have tried unsuccessfully to teach our

subjects how to create their own algorithms. The approach taken

here differs from our earlier efforts in two respects. First, we

have chosen uncertain quantities for which we were able to think

of very simpla algorithms, involving, in most cases, only two or

three steps. Secondly, instead of asking the subject to produce

an answer, we ask them to evaluate the answer provided for each

question by the experimenters (which, we assure the subjects, is

the wrong answer). Of course, building a successful algorithm

requires coming up with an answer. But for this task the

subjects do not have to worry about the accuracy of their own

answers. They use these answers, instead, to decide whether the

answer we have given them is wrong because it is too high or

because it is too low.

Thus the overall plan of the present experiment was to

present subjects with four questions and answers, asking them

whether our answer is too high or too low. Following these

control questions, we gave subjects a tutorial in how to write

algorithms. After the tutorial, the subjects received four new

questions and answers. The task was the same, but this time they

were asked to write and use algorithms.

Receiving both a question and an answer, with the task of

evaluating the answer, is a common experience. For example,

questionable statistics abound in the news media (Singer, 1971).

Can three million dollars really be the value of those



confiscated drugs? Is the U.S. really fourteenth in the world in

child mortality rates?

Providing an answer also makes possible two different

approaches to building algorithms. One can forget the answer,

temporarily, and find one's own answer by constructing an

algorithm. One then compares the new answer with the one

provided. We call this the Forward approach. Alternatively, one

can use the answer provided, decomposing it via an algorithm

until one arrives at an estimate of some other quantity. This

new estimate, which is an implication of the answer given, can

then be judged directly. We call this the Backward approach. In

the present experiment we test the effectiveness of both

approaches.

Design

Table 1 shows the eight questions used in the experiment,

along with the correct answer (found in reference books), the

factor used to arrive at the answers given to subjects, and the

high and low answers given to subjects.

Insert Table 1 about here

The questions were chosen to suggest relatively simple

algorithms, for example, "Oregon is approximately in the shape of

a rectangle 200 miles from North to South and 500 miles from East

to West. Therefore the area is about 200 x 500 = 100,000 square

miles." Two of the questions (USEmpls and USChips) suggested to
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us an algorithm using the population of the United States (e.g.,

"There are about 240 million people in the U.S. If, on average,

each person consumes 3 lbs of chips a year..."). Two more

questions (ORUnemp and ORTaxes) suggested the use of the

population of Oregon in an algorithm. Two questions involved

speed (SPHorse and SPCar); the final two questions involved none

of the above factors.

The factors chosen to arrive at the "High" and "Low" answers

were based on pretest data. In the pretest, subjects were given

answers that were two or five t].nes as large as the correct

answer or half or one-fifth as large. The subjects were told

that the answer was incorrect and were asked whether the answers

was too high or too low. From these responses we chose factors

to use in the present experiment that we estimated would produce

approximately 60% correct reponses. Four of th- questions

revealed systematic biases in the pretest. For the Popes and

USChips questions, more than 50% of the pretest subjects said the

answer was too high when the answer given was in fact half the

correct answer. For the ORUnemp and USEmpls questions, less than

50% said the answer was too high when in fact is was twice the

correct answer.

Instructions. The instructions for the first four questions

in the main experiment were the same for all subjects. rhey

emphasized that each answer was wrong and that the subjects' task

was to decide whether our answer was too high or too low.

Subjects were also instructed to indicate the probability that



their decision was correct. This probability was to be stated as

"percent chances," from 50 to 100%. Each question appeared on a

single page, followed immediately by the provided answer. The

subjects checked "This answer is: Too High; Too Low."

They then expressed their confidence that their response was

correct: "The chance that my decision is correct is %.1

Following these four control questions the subjects read, at

their own pace, a detailed tutorial about how to create their own

algorithms. Following the tutorial, the final four questions

appeared, in the same format as the first four with the

additional note, "Show estimates and calculations here," heading

the remaining, blank, -pace on each page.

On the final page of the questionnaire, subjects were asked

to estimate the populations of Oregon and the United States.

Twenty-four versions of the questionnaire were prepared.

Each version had two high and two low answers in each half. Each

version had one U.S., one Oregon, one Speed, and one

Miscellaneous question in each half. Across the versions the

order of questions varied, with each question appearing equally

often in the first and second half and equally often with a high

or low answer. The four questions that the pretest had shown

were biased were also counterbalanced in the design, with one of

the questions for which the pretest subjects believed the answer

was larger than it truly was and one for which they thought it

was smaller in each half of the quesionnaire.

Tutorials. Each subject receilved one of two tutorials, the
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Forward and the Backward tutorials. The Forward tutorial

instructed the subjects to build an estimate of the true answer

to the question from facts they already knew or could estimate

and to compare their estimate with our answer to see if our

answer was too high or too low. The tutorial gave three examples

of algorithms. An easy algorithm was shown for the question,

"How tall is the Empire State Building?", based on estimates of

the number of floors and the height of each floor. Two more

complex algorithms were then shown, both for the question, "What

was the total attendance at all major league baseball games in

1983?" One of the algorithms was built from estimates of the

number of teams, the number of games each team plays per year,

and the average attendance per game. The other algorithm, for

the same question, was based on the average yearly attendance per

team and the number of teams.

The Backward tutorial instructed the subjects to start with

our answer and decompose it, using facts they knew or could

estimate, to arrive at an implication which they could directly

judge as being too high or too low, and to use that judgment to

decide whether our answer was too high or too low. The same

examples were used, rewritten to conform to the Backward

approach. For example, for the height of the Empire State

Building, the instructions said,

Our Answer: 2500 feet.

Here's how to use the method: Start with the

number given, 2500 feet, and combine it with a fact you

8



already know or can estimate. What do you know about

buildings? Perhaps you know that in tall buildings

each story is approximately 10 feet high. So we use

this fact:

2500 feet divided by 10 feet per story equals 250

stories.

Is this believable? Can the Empire State Building

have 250 stories? Compare the result of your

calculation with your knowledge and your common sense.

It just doesn't make sense to suppose that the Empire

State Building is 250 stories high. That is much too

many stories. So you would conclude that the answer we

gave is too high.

The Forwards and Backwards tutorials are given in the

Appendix.

Subjects. The subjects were recruited through an ad in the

University of Oregon student newspaper and through fliers passed

out on campus. They came to a classroom at any time during the

specified day, completed the task (and another short, unrelated

task) at their own pace, and were paid for their participation.

There were 245 subjects, 136 males and 109 females, with a

median age of 23 (range 15 to 58).

Results

Over all subjects, there was only a small increase in

accuracy as a result of using algorithms. For the first four

questions, 65% of the subjects' decisions were correct; for the

IS



last four, 69% were correct. This increase is marginally

significant (2.60 correct answers per subject vs. 2.77 correct

answers, F = 3.58, p < .06). The percentage correct was better

in the second half for six of the eight questions; a small

decrease in percentage correct was found for USChips (from 65% to

64%) and SpHorse (from 68% to 62%). There was no difference in

performance between the group receiving the Forward tutorial (71%

correct) and those receiving the Backward tutorial (68% correct).

Scoring algorithms. Each of the 245 subjects was asked to

write four algorithms. These 980 algorithms were scored by two

coders1 (with disagreements resolved by discussion) according

to the following coding scheme:

F: A forward algorithm, essentially complete.

B: A backward algorithm, essentially complete.

BF: Two complete algorithms, one forward, one backward.

FT: A forward algorithm, complete, with a time-reversal

error (see below). Used only for the two Speed questions.

BT: A backward algorithm, complete, with a time-reversal

error. Used only for the two Speed questions.

FI: An incomplete algorithm, with enough detail given to

recognize it as forward.

BI: An incomplete algorithm, with enough detail given to

recognize it as backward.

N: No algorithm or an algorithm so incomplete that the

coders could not classify it as forward or backward.

K: The subject did not give an algorithm because the

10



subject claimed to know the correct answer.

A particular kind of conceptual error was occasionally made

with the two speed questions; we called it a time reversal. The

essence of such algorithms was, for example, for the SpCar

question with the low answer of 98 minutes:

If a car can go 500 mile in 98 minutes, it goes

about 300 miles an hour. That is faster than a race

car can go. Therefore, the 98-minute answer is too

hicth.

Here the reasoning is valid until the last statement. If 300 mph

is too fast a speed, that logically implies that the answer is

too low, not too high.

Similarly, for the SpHorse question with the high answer of

10 minutes 46 1/5 seconds:

If a horse can run 4 miles in about 10.75 minutes,

it is running at a speed of about 22 miles per hour.

That is slower than race horses can run, so the answer

is too low.

In fact, running too slowly is logically associated with a too-

high answer, not a too-low answer.

The algorithm coding scheme did not consider the

sensibleness of the algorithm. Some algorithms were quite

detailed and sophisticated. Two such algorithms are shown in

Table 2. Both were forward algorithms given to the ORUnemp

question with a low (63,000) answer. The first algorithm

(written by a 21-year-old female) omits the fact that not all

11



people of working age seek work. In addition, it does not take

into account the fact that most people on unemployment do not

remain unemployed for an entire calendar year; thus if the

unemployment rate were 10% at any one time, many more than 10%

would receive benefits in the course of a year. These two

omissions created cancelling errors; the resulting estimate of

150,000 was quite close to the true value of 188,000. The second

algorithm, written by a 24-year-old male, includes the fact that

not all people of working age work or want to work but omits the

distinction between the number of people drawing benefits at any

one time and the number during the course of the whole year.

Thus although his algorithm is quite sophisticated, his answer,

30,000, is low by a factor of more than 6.

Insert Table 2 about here

Most of the complete algorithms used the approaches we

expected, such as estimating the length and width of Oregon and

multiplying them together to estimate the square miles. A few

algorithms used novel approaches. One subject responding to

ORTaxes considered state expenditures rather than state income (a

not unreasonable approach; Oregon's Constitution forbids deficit

spending) by dividing the answer given by the salary of the

President of the University of Oregon and assessing whether it

was reasonable to suppose that the state employed that many

people.

12



Table 2

Two Algorithms Written for the ORUnemp Question

Population of OR: 2 million

Unemployment in 1982 = 10%

But not all Oregon residents are seeking employment. The

baby boomers are in their 30's (i.e., the bulk of the population

is middle aged and therefore seeking employment).

If you live 70 years you probably work about 45 years.

45/70 = 64% seeking employment

But I will add 10% for the baby boomers

75% of 2 million = 1,500,000

10% of that = 150,000 out of work

Life expectancy: 76 years

Years eligible for unemployment:

Age 18 to 60 = 42 years

42/76 = 1/2

Population of OR: 2.3 million

1/2 x 2.3 = 1.15 million

% who work or want to work: 30%

30% of 1.15 million ! 300,000

10% Unemployment, thus

30,000 unemployed, receiving benefits

L3



Some algorithms showed faulty reasoning, wildly incorrect

estimates, or arithmetic errors. These included one subject who

calculated the area of Oregon using the formula, Area = (length +

2width) . Another estimated the length of Oregon as 700 miles,

noted that there are about 5,500 feet in a mile, and ended with

the conclusion, "700 x 55 = 38,500 square miles." Both

misestimation and arithmetic error can be seen in this simple

algorithm for the area of Oregon: "1000 [miles long] x 3000

[miles wide] = 30,000 square miles." One subject's estimate of

the number of Popes involved a listing: One in the US, one in

South America, one in Europe.... We did not attempt to score

algorithms for their quality of reasoning (except for time

reversals), adequacy of estimates, or arithmetic correctness.

All the examples given here were coded as complete algorithms.

The subjects were not consistent in following the tutorial

instructions to produce Forward (for half the subjects) or

Backward (for the other half) algorithms. Counting only the

algorithms that could be identified as forward or backward

(whether complete or incomplete), 77% of the Forward-instructed

group's algorithms were coded as forward; only 51% of the

Backward-instructed group's identifiable algorithms were coded as

backward. This asymmetry suggests that the subjects found

forward algorithms more natural or easier to create. Backward

algorithms were rarest for SqMiles--only 13% of all identifiable

algorithms--and commonest for USEmpls--59%. The most common

algorithm for USEmpls was a backward algorithm along the lines of

14



the following: If there are 100,000,000 workers in the US, the

given answer of 1,454,013 implies that 1.4% of all workers are

Federal workers, a percentage that is too low.

Table 3 shows the frequency of different types of algorithms

the subjects produced and the corresponding percentages correct.

In a high majority of cases, subjects were able to write

algorithms that the coders could understand (although some of the

algorithms had severe faults). The subjects' decisions as to

whether the experimenter-provided answers were too high or too

low were more often correct when a complete algorithm was given

(70.3%) than when it was not (63.2%). The lowest percentage

correct was associated with time reversals (which were made by

13% of the subjects on their Speed question); because this error

led subjects to the opposite conclusion, only 15.2% of these

decisions were correct.

Insert Table 3 about here

The data shown in Table 3 suggest the hypothesis that

subjects who are able to write complete algorithms profit more

from the tutorial than those who don't. This hypothesis was

tested by dividing subjects into two groups, those who wrote four

complete algorithms and those who wrote three or less. (A finer

division was not possible because of reduced sample size. For

example, only 6 subjects produced no complete algorithms.) For

this analysis, the 33 algorithms that contained time reversals

15



Table 3

Frequency of Types of Algorithms with Percentage Correct, Across

all Subjects and Questions in the Second Half of the Experiment.

Type of Algorithm Frequency % Correct

Complete

Forward 506 72.5

Backward 281 71.5

Both 24 83.3

Time Reversal 33 15.2

Subtotal 844 70.3

Incomplete or None 133 63.2

Knows Answer 3 66.7

Total 980 69.3
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were categorized as incomplete, which should have the effect of

enhancing the probability of finding support for the hypothesis,

since these 33 subjects are all scored as having less than 4

complete algorithms and time reversal errors are known to lower

radically the percentage of correct decisions. Nevertheless, the

data in Table 4 do not support the hypotheses. The main effect

of algorithm completeness is highly significant, F = 13.60,

p < .001, and, as previously mentioned, the main effect of the

tutorial is marginally significant. However, the interaction

that one would expect under the hypothesis does not exist,

F = .02, p = 0.88. Subjects who could write four complete

algorithms made more correct decision before the tutorial as well

as after it. Thus the most reasonable explanation of the data in

Table 3 is that subjects who have the knowledge or intelligence

to write a complete algorithm are more likely than others to make

a correct decision (with or without the tutorial).

Insert Table 4 about here

Misinformation. Although we could not study the effect of

the faulty logic, misestimates, and arithmetic errors that we

found in our subjects' algorithms, the experimental design did

allow us to explore the effect of two items of information on

subjects' performance. At the end of the experiment, subjects

were asked to estimate the population of Oregon and of the U.S.

The population of Oregon at the time this experiment was run

17



Table 4

Mean Number of Correct Decisions (out of 4) as a Function of

Number of Complete Algorithms, Before and After the Tutorial.

Before After

Tutorial Tutorial

4 Complete Algorithms 2.73 2.92 N = 142

<4 Complete Algorithms 2.42 2.57 N = 103

18



was about 2,662,000. Our subjects' estimates ranged from 17,000

to 800,000,000, with a median of 2,225,000, first quartile of

1,500,000, and third quartile of 3,050,000. We separated the

answers into three groups, high (> 3.5 million; n = 53), low (< 2

million; n = 76), and about right (between these values; n =

115); there was one missing value.

The population of the U.S. was about 235,100,000. Our

subjects' estimates ranged from 82,000 to 748,000,000,000 (this

estimate may have been a joke, but the next highest estimate was

250 billion), with a median of 248,900,000; first quartile,

210,000,000; third quartile, 600,000,000. We separated the

answers into three groups, high (> 300 million; n = 78), low (<

1.75 million; n = 39), and about right (between these values; n =

128). For both the U.S. and the Oregon estimates, the divisions

were made at approximately 75% and 133% of the true values.

Each subject received one question for which knowing the

population of Oregon would have been helpful (either ORUnempl or

ORTaxes) and one question for which knowing the population of the

U.S. would have been helpful (either USEmpls or USChips) before

receiving the tutorial and one of each type after the tutorial.

Table 5 shows the results for these four questions separated

according to whether the question appeared before or after the

tutorial, whether the answer provided by the experimenters was

too high or too low, and whether the subject's belief about the

relevant population was too low, about right, or too high.

19



Insert Table 5 about here

Here, at last, we find a strong effect of the tutorial.

Suppose we give you the high answer to the potato chip question.

If you believe that there are fewer people in the U.S. than there

are in fact and if use use that false knowledge to evaluate the

potato chip question, you should be more likely to decide that

our answer is too high than if you had not used your false

knowledge. But if we gave you the low answer, using your false

knowledge might lead you astray. Because you believe there are

so few people in the U.S., you might wrongly conclude that our

low answer was too high. Thus, the increase in percentage

correct in the first row of Table 5, from 50% to 70%, and the

decrease in the fourth row, from 76% to 60%, both suggest that

the effect of the tutorial was to cause subjects to use their

knowledge about other relevant facts.

A similar argument can be made for those whose population

estimates are too high: The tutorial, if effective, should

increase performance when the answer is low (strongly supported

by the data, 60% to 86%) but decrease performance when the answer

is high (weakly supported, 49% to 46%).

This reasoning also predicts a consistent pattern down the

columns of Table 5. When the answer is too high, best

performance should occur for those who make low population

estimates and worst for those who make high population estimates.

20



Table 5

Percentage Correct for the U.S. and Oregon Questions as a

Function of Population Beliefs

Percent Correct

Before After

Tutorial Tutorial Difference

Answer was High

Subject's Estimate Low 50 70 +20

Subject's Est. About Right 55 58 +3

Subject's Estimate High 49 46 -3

Answer was Low

Subject's Estimate Low 76 60 -16

Subject's Est. About Right 70 75 +5

Subject's Estimate High 60 86 +26

Over All Data 62 65 +3
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The reverse should be true when the answer is too low. These

patterns are seen only in the data collected after the tutorial,

suggesting that subjects did not use their knowledge of

population size until they were taught to write algorithms.

These results from Table 5 were not subjected to statistical

tests because each subject is represented four times in Table 5,

unsystematically across the cells (one person, for example, might

have too high an estimate for the U.S. population and too low an

estimate for the Oregon population).

Calibration. Subjects were asked, for each question, not

only to decide whether our answer was too high or too low, but

also to assess the probability that their decision was correct.

These confidence judgments were analyzed for calibration, that

is, the degree to which the assigned confidences matched the

correctness of the decisions. The results show:d the same

overconfidence found in many previous studies (for a review, see

Lichtenstein, Fischhoff & Phillips, 1982). For example, for all

those decisons assigned a confidence of 90%, only 80% were

correct; the percent correct was 84% for decisions assigned a

confidence of 100%.

It surprised us to find no difference in calibration between

the pre-tutorial and the post-tutorial data. We had supposed

that the existence of an aid would increase confidence; since it

had little effect on accuracy, this would change the

confidence/accuracy relationship. We can only conjecture that

the subjects found it so difficult to write their own algorithms
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that the existence of this aid did not increase their confidence

much.

Discussion

In this experiment we gave subjects questions concerning

facts they would be unlikely to know but could estimate and

provided subjects with a wrong answer. The subjects' task was to

decide whether the given wrong answer was too high or too low.

After completing four such items, subjects were given tutorials

on how to create algorithms, based on facts they knew or could

estimate, to help them in their task. They then completed four

more items under instructions to write an algorithm for each one.

These efforts to teach subjects to create their own

algorithms was successful in the sense that most subjects were

able to write algorithms for the questions we gave them.

However, the increase in the accuracy of their decisions as a

result of creating and using algorithms, from 65% to 69%, was

only marginally significant and unimpressive in size.

Two different approaches to creating algorithms were used.

In the Forward approach, subjects were instructed to start with

facts they knew or could estimate, from these considerations

build an answer to the question asked, and compare their answer

with the answer provided by the experimenters. In the Backward

approach, subjects were asked to start with the answer provided

by the experimenters and, using facts they knew or could

estimate, derive some conclusion that they could evaluate from

common sense.
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There was no significant difference in performance between

the Forward-instructed and Backward-instructed groups. The

Forward-instructed subjects sometimes created Backward algorithms

and the Backward-instructed subjects often created Forward

algorithms. Overall, 63% of the codable algorithms were Forward,

suggesting that this approach is more natural to the subjects.

The goal of the tutorials on how to write algorithms was to

teach our subjects to access their knowledge about related

matters and to organize this knowledge coherently. By studying

the effects of subjects' beliefs about the population of Oregon

(where the experiment was performed) and the population of the

U.S., we were able to show that the tutorials were successful in

causing the subjects to consider their knowledge about facts

relevant to the questions at hand. However, many of the subjects

held such faulty beliefs (e.g., that the population of Oregon is

100,000 or 300 million) that using these erroneous facts led the

subjects astray almost as often as it helped.

Additional barriers to successful use of algorithms were

faulty logic and poor arithmetic skills.

As an aid to decision making, then, this approach is a mixed

blessing. Young adults who might be supposed to be above average

in intelligence can be taught to access their own knowledge and

combine it in logical ways, but their lack of mathematical skills

and possession of misinformation hampers their performance.
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APPENDIX

INSTRUCTIONS TO SUBJECTS

Assessing Quantitative Facts

In this task we will present you with some questions, like "What is the
world record time to run a mile?" For each question we provide an answer,
like "8 minutes." EVERY ANSWER WE GIVE YOU IS WRONG. Your first task is to

decide whether the answer provided is wrong because it is too LARGE a
number, that is, too high, or because it is too SMALL a number, that is, too
low.

The questions are straightforward; we have not used any "trick" items.
We found the answers in various almanacs and the like, and then changed the
answers, either by raising them or by lowering them. Some of the answers on
your form of the questionnaire are too high; others are too low. In the

first part there are only four questions. So please take your time on each
one. Think hard about it before deciding whether the answer is too high or
too low.

Your second task in this first part is to assess the probability that
your decision is correct. Suppose you decided that our answer is too high.
Then in this second task we want you to tell us the probability that the
answer is, indeed, too high. If you decided that an answer is too low, now
we want you to give us the probability that it is, indeed, too low.

This probability is stated in terms of "percent chances." It is a
measure of the confidence you have in the correctness of yo,:r de'ision. If
you are totally uncertain, so that you could just as well have decided with

a flip of a coin, then you have a 50% chance of being right. If you are
absolutely certain that you are right, as certain as you are of knowing your
own name, then you are 100% certain. A response of 60%, for example, means

that there are 60 chances out of 100, or 6 chances out of 10, that you made
the right decision. Your answer in this second task should always be a
number between 50% and 100%, inclusive. DO NOT USE A NUMBER SMALLER THAN 50
OR GREATER THAN 100.

You can start this task as soon as you are sure that you understand the

instructions. Feel free to ask questions.
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BACKWARD VERSION

MORE INSTRUCTIONS

Next, you'll get four more questions, very like the four you just did.

Again, we are giving you an answer that is WRONG. Again, we are asking for

your judgment: Is the answer we give too high or too low? Again, after you

make this decision, you should give us a number between 50 and 100 to

express your confidence that your decision is correct.

But this time we want you to use a particular method for evaluating the

answer. In a nutshell, this method is to start with the answer we give you

and to reduce it, using one or more facts or estimates and some simple

arithmetic, in order to arrive at a number you can evaluate more easily,

using common sense.

The method will be clearer with a couple of examples. First, a very

simple example:

How tall is the Empire State Building in New York City (excluding the TV

antenna on top)?

Our answer: 2500 feet

Here's how to use the method: Start with the number given, 2500 feet,

and combine it with a fact you already know or can estimate. What do you
know about buildings? Perhaps you know that in tall buildings each story is
approximately 10 feet high. So use this fact:

2500 feet divided by 10 feet per story equals 250 stories.

Is this believable? Can the Empire State Building have 250 stories?

Compare the result of your calculation with your knowledge and your common

sense. It just doesn't make sense to suppose that the Empire State Building

is 250 stories high. That is much too many stories. So you would conclude

that the answer we gave is too high.

Alternatively, you might have approximate knowledge of how many stories

there are in the Empire State Building. Let's say that you remember that
there are about 100 stories. The the method would go like this:

2500 feet divided by 100 stories equals 25 feet per story.

Is this believable? Even if you have never before thought about how

tall one story of a large building is, it flies in the face of common sense

to suppose that each story is 25 feet tall. That's more than 4 times as
tall as the average person. Again, you conclude that the answer we gave you
is too large.

In fact, the Empire State Building is 1250 feet tall ano has 102
stories. Thus in fact the average story is 1250 + 102 - 12.25 feet. Notice

that your estimate of 10 feet per story was a bit off. Nevertheless, the

method worked okay, because the answer we gave you was very much off. If

you make small errors in your approximations you'll probably still do okay.
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Now let's take an example that requires several facts or estimates.

What was the total attendance at all major league baseball games in 1983?

Our answer: 15,186,000

For our first try at this, we'll use three estimated facts:
1. There are about 30 major league teams.
2. Each game is played by 2 teams.
3. Each team plays about 150 games per year.

We start with 15,186,000. Divide this by 150 games per year, getting
approximately 100,000, which is an estimate of the number of people
attending one or another game on a single day when all teams play. Because
there are 30 teams, there are 15 games when all teams play at once. So
divide the 100,000 by 15, getting about 6700 attendance at each average
game.

Is this number, 6700, sensible? Think of a baseball stadium. They're
huge. The average attendance at a single major league game is surely more
than this. So the given answer must be too small.

(In fact, there are 26 major league teams and each team plays 162 games
per year, but we were close enough in our estimates. The correct answer for
the 1983 attendance is 45,557,582.)

There is usually more than one way to approach these questions. For
example, suppose I don't have a good idea of how many teams there are, and I
don't know how many games they play, but I remember reading that one team
had a home attendance, for the year, of less than one million; the article
implied that this was very low. So the average attendance for one team must
be above one million. I guess it may be 1.5 million (1,500,000). It would
have to be at least that high for that article I read to make such a big
deal about falling below one million. Using only this one vague estimate,
the method goes like this:

15,186,000 total attendance divided by 1,500,000 per team attendance is
about 10 teams. Are there only 10 teams? Even if I know very little about
baseball, I remember there are two leagues. Only 5 teams per league? I
think that's too small. So 15,186,000 is too small, too.

For each of the following four questions and answers, use the method
explained above. Start with the answer given and use simple arithmetic and
some relevant facts or estimates from your own knowledge to arrive at a
number which you can then evaluate using knowledge or common sense.

Please write out enough words and numbers so that we can understand
your approach. Try to make it legible and clear (but you don't need to
write us a novel).

Take your time. We're giving you only four questions in this part so
you can concentrate and do a careful job on each one.
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Don't forget to give a confidence rating, too. The rating must be a
number from 50 (for complete lack of confidence) to 100 (for utter
certainty).

Now that you know this method, please do NOT go back to change any of
your previous answers.

After these next four questions, there is one more short page. That
completes the experiment. Return the materials and sign for your payment.
The experimenter will check to see that you completed everything, that your
handwriting is reasonably legible, and that all of your confidence ratings
are between 50 and 100 (inclusive). When you finish, take a moment to check
these things, too.

You can go ahead as soon as you understand these instructions. Feel
free to ask questions.

Thank you for your participation.
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FORWARD VERSION

MORE INSTRUCTIONS

Next, you'll get four more questions, very like the four you just did.
Again, we are giving you an answer that is WRONG. Again, we are asking for
your judgment: Is the answer we give too high or too low? Again, after you
make this decision, you should give us a number between 50 and 100 to
express your confidence that your decision is correct.

But this time we want you to use a particular method for evaluating the
answer. In a nutshell, you will use your own knowledge of related facts to
construct your own answer, then compare your answer with ours.

The method will be clearer with a couple of examples. First, a very
simple example:

How tall is the Empire State Building in New York City (excluding the TV
antenna on top)?

Our answer: 2500 feet

Here's how to use the method: Forget our answer for a moment, and
construct your own. What do you know that's relevant? Perhaps you can
estimate the number of stories in the Empire State Building. Say, about
100. And you can give a reasonable estimate of the height of an average
story, say about 10 feet. These two facts or estimates drawn from your own
knowledge can be put together to get an estimate of the target quantity:

100 stories times 10 feet per story equals 1000 feet, height of
building.

Your estimate, 1000 feet, is much lower than our answer. So our answer
must be too high.

That's all there is to it. Search your memory and use your common
sense to get facts or estimates that are relevant. Put these numbers
together using simple arithmetic to arrive at your own estimate. Compare
your estimate with our answer.

In fact, the Empire State Building is 1250 feet tall and has 102
stories. Thus in fact the average story is 1250 - 102 = 12.25 feet. Notice
that your estimate of 10 feet per story was a bit off. Nevertheless, the
method worked okay, because the answer we gave you was very much off. If
you make small errors in your approximations you'll probably still do okay.

Now let's take an example that requires several facts or estimates.

What was the total attendance at all major league baseball games in 1983?

Our answer: 15,186,000

For our first try at this, we'll use four estimated facts:
1. There are about 30 major league teams.
2. Each team plays about 150 games per year.
3. Each game is played by 2 teams.
4. The average attendance at any one game is about 15,000.
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Put these all together. Thirty teams times 150 games is 4500 team
appearances per year. But since each game requires two teams, 4500 .- 2 -

2250 total games per year. Games per year times average attendance per game
equals total attendance:

2250 times 15,000 - 33,750,000
Our new estimate is 33,750,000. That is much larger than the answer
provided (15,186,000), so we conclude that the answer provided is too low.

(In fact, there are 26 major league teams and each team plays 162 games
per year, and the average attendance per game is 21,632, but we were close
enough in our estimates. The correct answer for the 1983 attendance is
45,557,582.)

There is usually more than one way to approach these questions. For
example, suppose I don't have a good idea of how many teams there are, and I
don't know how many games they play, but I remember reading that one team
had a home attendance, for the year, of less than one million; the article
implied that this was very low. So the average attendance for one team must
be above one million. I guess it may be 1.5 million (1,500,000). It would
have to be at least that high for that article I read to make such a big
deal about falling below one million.

But how many teams are there? I remember there are two leagues. Each
league must have at least 10 teams, for a total of 20 teams. I don't think
they each have as many as 20 teams, for a total of 40 teams. Let's try an
estimate a bit below the middle of that range, say 25 teams. Twenty five
times 1.5 million attendance for each team gives a total attendance of
37,500,000. That is much higher than the provided answer. Even if I had
used my low guess for the number of teams (20), 1 still would have gotten an
estimate larger than the one provided. So it looks like the answer given is
too small.

For each of the following four questions and answers, use the method
explained above. Use simple arithmetic, some relevant facts or estimates
from your own knowledge, and common sense to arrive at your own estimate of
the answer. Then compare your answer with the one given.

Please write out enough words and numbers so that we can understand
your approach. Try to make it legible and clear (but you don't need to
write us a novel).

Take your time. We're giving you only four questions in this part so
you can concentrate and do a careful job on each one.

Don't forget to give a confidence rating, too. The rating must be a
number from 50 (for complete lack of confidence) to 100 (for utter
certainty).

Now that you know this method, please do NOT go back to change any of
your previous answers.
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After these next four questions, there is one more short page. That
completes the experiment. Return the materials and sign for your payment.
The experimenter will check to see that you completed everything, that your
handwriting is reasonably legible, and that all of your confidence ratings
are between 50 and 100 (inclusive). When you finish, take a moment to check
these things, too.

You can start as soon as you understand these instructions. Feel free
to ask questions.

Thank you for your participation.
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ONE LAST, SHORT PAGE

Please make estimates of the following as carefully as you can:

What is the population of the United States?

What is the population of Oregon?

That's the end. Please review to make sure you didn't leave anything out.

Then return this questionnaire for your payment. We would be very grateful

if, for the next week, you would NOT discuss this experiment with anyone who

has not participated in it.
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